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Abstract
Canonical equations governing an electron motion in electromagnetic field
of the whistler mode waves propagating along the direction of an ambient
magnetic field are derived. The physical processes on which the equations
of motion are based are identified. It is shown that relativistic electrons
interacting with these fields demonstrate chaotic motion, which is accompanied
by particle stochastic heating and significant pitch angle diffusion. Evolution
of distribution functions is described by the Fokker–Planck–Kolmogorov
equations. It is shown that the whistler mode waves could provide a viable
mechanism for stochastic energization of electrons with energies of up to
50 MeV in the Jovian magnetosphere.

1. Introduction

AQ1

A description of the stochastic dynamics of charged particle in the field of wave packet is one
of the fundamental problems in the theory of plasma physics, which has attracted interest for
many years [1]. Thus, the stochastic dynamics of relativistic electrons in the time-like wave
packet has been discussed by Chernikov et al [2]. A theory of dynamic chaos has also been
employed to deal with high-frequency heating of electrons in the Langmuir wave packet [3].
Possible astrophysical applications of these results were discussed in [4]. Nagornykh and
Tel’nikhin have announced some results of a theoretical study concerning stochastic particle
motion in the magnetized plasmas [5]. On the other hand, Zaslavsky et al [6] have reported
the results describing electron stochastic motion in the upper-hybrid wave propagating across
an ambient magnetic field. Concepts and methods that were developed in these works have
impacted our approach to the problem.

The goal of the present paper is a systematic study of relativistic particle motion in a
whistler wave packet. Earlier the basic concepts of energy diffusion of relativistic electrons
resulting from resonant interaction with whistlers in the magnetosphere have been discussed,
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for example, by Walker [7] and Summers et al [8]. In our work we discuss the stochastic
motion of high-energy electrons due to a spectrum of whistler mode waves. The results of the
study of the problem are of interest from the point of view of interpreting the experimental
results.

The paper is organized as follows. The canonical equations of motion expressed in terms
of the action- angle variables are derived in section 2. The nonlinear resonance wave–particle
interaction is discussed qualitatively in section 3. In section 4 it is shown that the stochastic
motion of relativistic electrons can be described by the closed set of nonlinear difference
equations. The solutions of these equations are obtained both analytically and numerically. In
section 5 it is proved that particle dynamics is realized on the stochastic attractor with fractal
structure. The Fokker–Planck–Kolmogorov equation is derived in section 6, and the effects
associated with particle stochastic heating such as the pitch angle scattering and radial drift of
plasma particles are studied. Application of our results to high-energy electrons observed in
the Jovian election radiation belts is described in section 7. In section 8 we give the conclusions
of our studies.

2. Basic equations

Let us consider a relativistic particle of charge |e| and mass m in the wave packet of
extraordinary electromagnetic waves propagating along an external uniform magnetic field
of strength B. The Hamiltonian corresponding to the problem is

H(r, p; t) =
√
m2 + (p + A)2, (1)

and the canonical equations of motion are

ṗ = [p, H ], ṙ = [r, H ], (2)

where p is the canonical momentum, r is the position vector, A the vector potential divided
into two parts, A = Aw +Aext, superscripts w and ext denote both the wave and external fields,
and [ , ] stand for the Poisson brackets.

We have employed here and throughout this paper, the frame of reference in which the
speed of light c = 1 and charge |e| = 1.

We denote byR the set of all real numbers. Then p ∈ R3, r ∈ R3 and the smooth manifold
M = R6 will be a canonical space of this dynamic system, and R6 = R3 × R3 is a direct
product space.

In order to write down equations of the particle motion one must specify a coordinate
system. We have chosen a Cartesian spatial coordinates system whose z axis is directed
along the external magnetic field; the plane perpendicular to this direction is spanned by the
orthogonal coordinates x and y.

Making use of the connecting relations,

B = [∇,A], E = −∂A/∂t, (3)

we have in the coordinate representation

r = (x, y, z), Bext = (0, 0, B), (4)

Aw =
(∑

k

Ak sin ϕ,
∑
k

Ak cosϕ, 0

)
,

ϕ = zk − tωk, (5)

Aext = (−By,Bx, 0)/2. (6)
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Here the expression for Aext is written in the axial gauge, Ak is the amplitude of mode in the
wave packet, k is the wave number and ωk is the dispersion equation.

The dispersion relation for the electron branch of the whistler mode waves in the cold
magnetoplasma is written as

k2/ω2 = 1 + ω2
p/[ω(ωB − ω)], (7)

where ωB and ωp are the gyrofrequency and electron plasma frequency, respectively.
Equation (7) in a weak magnetic field, when the condition (ωBω/ω

2
p) � 1 is valid,

reduces to

v2
ph = ω(ωB − ω)

ω2
p

, v2
ph � 1. (8)

In a strong magnetic field, provided that ω/ωB � ωp/ωB, ω2
p/(ωωB) � 1, equation (7)

reduces to

vph = 1 − ω2
p

2ωωB

. (9)

We now take into account the axial symmetry of the non-perturbative problem and introduce the
new variables, an action(I ) and an angle (θ), by a canonical transformation (x, px; y, py) →
(θ, I ) :

x = r cos θ, px = −(mrωB/2) sin θ,

y = r sin θ, py = (mrωB/2) cos θ; (10)

r =
√

2mωBI/mωB, ωB = B/m, (11)

where r is the gyroradius.
The Hamiltonian (1) in this representation becomes

H(z, pz; θ, I ; t) = H0(p, I ) +
√

2mωBIH
−1
0 ·

∑
k

Ak cos(zk + θ − tωk), (12)

H0(p, I ) =
√
m2 + p2 + 2mωBI, pz ≡ p. (13)

Here we have assumed that the ratio µ = Aw/m � 1 is the small parameter of the
problem and retained in (12) only the leading terms.

Associated with (12) the equations of motion are

ṗ = [p,H ] =
√

2mωBIH
−1
0 ·

∑
k

kAk sinψ, (14)

İ = [I,H ] =
√

2mωBIH
−1
0 ·

∑
k

Ak sinψ, (15)

ż = [z,H ] = pH−1
0 , θ̇ = [θ,H ] = ωBmH

−1
0 . (16)

We omit in (16) the terms of the order of µ2 and introduce the definition for the phase

ψ
def= zk + θ − ωkt. (17)

It is obvious that a Hamiltonian flow (15), (16) preserves the measure dµ = dpz dI dz dθ
on the smooth manifold M = R3 × S, where S is the circle and θ(mod2π) ∈ S. Two pairs of
the canonical variables p, z and I, θ are symplectic coordinates on M with that algebra:

[ep, eθ ] = [ep, eI ] = [eI , ez] = [ez, eθ ] = 0,

[ep, ez] = [eI , eθ ] = 1,
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where [, ] denote a skew-product and, the set (ej ) is the coordinate basic, which can be given
by a differential operators ∂/∂xj [27].

AQ2This algebra will be used in the following.
Now the structure of the wave packet, Aw(t, z) = ∑

k Ak exp[i(zk + θ − tωk)], is to be
specialized. The most frequently used representations of the wave packet are the so-called
time- and space-like representations [6,9]. Such a wave packet may be excited in a plasma due
to intrinsic instabilities. In this particular physical situation, we make the following simplifying
assumptions regarding the structure of the packet:

k = k0 + n!k, ω = ω0 + n!ω, !k/k0 � 1, !ω/ω0 � 1, n ∈ Z, (18)

where k0 and ω0 are the characteristic wave number and frequency, !ω(!k) is the group
dispersion in the wave spectrum, so that

!ω = vgr!k, vgr = dω/d k, (19)

vgr is the group velocity,

!k = 2π/L, !ω = 2π/T , (20)

L and T are the length- and the timescales of the problem and Z denotes the set of all integers.
Then we suppose that the characteristic spectral amplitudeA0 is a slowly varying function

on t and z such that

Ȧ0/ωA0 � 1/ωT (� 1), ∇A0/kA0 � 1/kL (� 1), (21)

and write down the wave packet in the form

Aw(t, z) = A0 exp(iψ0)
∑
n∈Z

Ak exp[i(n!kz + n!ωt)], (22)

ψ0 = k0z + (ωBmH
−1
0 − ω0)t. (23)

Define the parameter, namely, η, the ratio of the particle velocity along an ambient magnetic
field to the group velocity,

η = vz/vgr. (24)

In the limit, !k → 0, η → 0, expression (22) can be transformed into

Aw(t, z) = A0 exp(iψ0)
∑
n∈Z

δ(t/T − n). (25)

There is the time-like representation (TLR) of a wide wave packet.
The Poisson sum formula∑

n∈Z
exp(in!ωt) =

∑
n∈Z

δ(t/T − n) (26)

has been employed in (25), where δ(·) is the Dirac delta-function.
In another limit !ω → 0, η → ∞, we can easily show that the wave field takes the form

of the space-like (SL) wave packet

Aw(t, z) = A0 exp(iψ0)
∑
n∈Z

δ(z/L − n). (27)

This packet represents a periodic sequence of impulses with characteristic spatial period
L = 2π/!k.

Note that both representations are often used. Thus, it is established [6,9] that the TLR is
available for the problem if the condition η2 � 1 holds. The TLR of the electric field of the
electrostatic waves was used by Chernikov et al [2] to derive the relativistic generalization of
the standard map. On the other hand, the SLR has been utilized in [3] to describe the stochastic
motion of the relativistic particle in the electrostatic field of Langmuir waves, whose group
velocity is small as known.
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3. Qualitative analysis of the particle motion

We now proceed to the physical aspect of the problem. First we consider the dynamics of
an autonomous system with the Hamiltonian given by (13). In this commutative integrable
situation (İ = 0, ṗ = 0), the phase curves lie on constant energy surfaces of H0 = E =
const:

{(z, p; θ, I ) :
√
m2 + p2 + 2mωBI = E}.

All solutions are regular, since trajectories in the phase space cannot intersect and each phase
curve corresponds in the configuration space to particle gyration in an external magnetic field
with a frequency ωBmH

−1
0 .

To understand the physical picture of the stochastic motion, let us discuss the simple case of
the single-wave Hamiltonian,

H = H0(p, I ) +
√

2mωBIH
−1
0 · Ak cos(zk + θ − ωkt), (28)

where Ak is the amplitude of certain mode in the wave packet, k is an arbitrary wavenumber
and ωk is the frequency of this mode.

Thus, the associated equations of motion are

ṗ = k
√

2mωBIH
−1
0 · Ak sinψ, (29)

İ =
√

2mωBIH
−1
0 · Ak sinψ, (30)

ż = vz = pH−1
0 , θ̇ = ωBmH

−1
0 , (31)

ψ̇k = ω(k,E) = kvz + ωBmE
−1 − ωk, (32)

where ω(k,E) is the nonlinear phase frequency.
It is easy to see that the system possesses the first integral, ˙inv. = (ṗ − kİ ) = 0. We put
const = 0 below and represent the invariant of motion as

αp − 2ωBI = 0, α = 2ωB

ω
vph. (33)

It is well known [1] that the stochastic motion will be mainly determined by the nonlinear
resonance wave–particle interaction,

ω(k,Er) = (kvz + ωBmE
−1 − ωk)r = 0, (34)

as well as the group velocity dispersion.
In the wave spectrum case the equation given above determines the family of resonance

states in energy space. The phase space of resonance states has the structure of the product
bundle, B × F , where B is the base, i.e. the open subset U ⊂ R2, Ir , pr ∈ U and F is the
typical fibre, F ∼= T 2, with the coordinates ((ω − kvz)t, θ(modd2π)) ∈ T 2.

Now varying (34) with respect to ω, k,Er we obtain the interval between adjacent fibres:

!E = (vz!k − !ω)/(k(∂vz/∂E)r − ωBmE
−2). (35)

Here!k and!ω are the intervals between adjacent modes in the wave spectrum, and !E
is the interval between the two adjacent resonance states in the particle energy space.

We specify the problem. First we introduce the following notation

ε ≡ E/m, εz ≡ p/m, εt ≡
√

2mωBI/m, (36)

and denote by sup{ε} = εb the upper bound of the set {ε}.
On the condition that (8) is valid and the parameter α is small, we stipulate

ε2
b � max {α2, 1}; (37)
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unlike this case, we assume that the condition

1 � ε2
b � α2 (38)

suits to the problem, when α � 1 and (8) holds.
Now with respect to the wave spectrum, the term ωd = !kvz − !ω occurring in (35)

describes the group velocity dispersion, and it can be represented in the form

ωd = !kvz � L−1vz, (39)

for vz/vgr � 1, and

ωd = !ω � T −1, (40)

for vz/vgr � 1.
Note that these representations are tantamount to the SLR and TLR of wave packet,

respectively.
We are interested in how relativistic and stochastic effects modify the property of particle

acceleration in the case corresponding to particle motion in a SL wave packet.
In the ultra-relativistic limit, both conditions, (37) and (39), are valid and vz � 1;

consequently, from (35) the following expression results

!ε � ε2
r (ωBL)

−1, (41)

in which the relation !k � 1/L was used.
Resonance wave–particle interaction leads to a widening of the own resonance energy

level. Denote by δε = ε − εr the width of the resonance level.
Integrating equations of motion (30) and (31) with the help of the invariant of motion (33),

we estimate the level width

δε � kα1/2ε−1/2
r (Ak/m)!t, (42)

!t = L/vz, vz � 1.

Now the criterion defining the allowed domain of random motion in energetic space can be
written as δε � !ε [9], [10], or, in the explicit form,

ε � εb = (
α3/2(kL)2(Ak/m)/2

)2/5
, (43)

which follows from the above two results, (41) and (42). Formula (43) predicts that the upper
value of the energetic spectrum depends on the magnitude of wave field as A2/5.

AQ3 For describing stochastic behaviour of relativistic electron in a time-like (TL) wave packet,
we use conditions (8), (40) and (35), which correspond to the particular physical situation. Now
substituting (40) into (35) we find the interval between the two adjacent resonance states;

!ε � ε2
r (ωBL)

−1. (44)

Then with the help of equations of motion (31) and (32) we evaluate the level width

δε � ωBT (Ak/m)/2εr . (45)

Now the condition of the resonance overlap, δε � !ε, yields the upper bound of the energetic
spectrum,

εb = (
α2ω2T 2Ak/m

)1/3
. (46)

Our analysis infers the possibility of self-generated, chaotic behaviour of the system in
some region of energetic space. It is easy to see that the structure of resonance energy space
mentioned above corresponds to quantized energy space, when each resonance state is assigned
its own energy level. The interval between adjacent energy levels caused by the group velocity
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dispersion depends on the particle energy as !ε ∝ ε2. On the other hand, the width of each
energy level is governed by the resonance wave–particle interaction, which becomes weak at
very high energies of the particle. Thus the overlap criterion determines the allowed stochastic
heating domain. We will carry on our advanced studies of stochastic motion in the following
sections.

4. Relativistic particle dynamics in a coherent wave packet

We specify first the wave spectrum of a packet. Let us assume that the wave packet is given
by (27). Thus, we will consider a relativistic electron motion in the space-like packet (SLP)
of the whistler mode waves. In this approach, dropping the subscript ‘0’, we write down the
equations of motion (15) and (16) in the form

ṗ = kA
√

2mωBIH
−1
0 sinψ

∑
n∈Z

δ(ζ − n), (47)

İ =
√

2mωBIH
−1
0 A sinψ

∑
n∈Z

δ(ζ − n), (48)

ż = pH−1
0 , θ̇ = ωBmH

−1
0 ; (49)

H0(p, I ) =
√
m2 + p2 + 2mωBI, (50)

ψ̇ = ω(p, I) = kpH−1
0 + ωBmH

−1
0 − ω. (51)

Here A,ω and k are the magnitude, frequency and wave number of the fundamental
(characteristic) mode, ζ = (z/L), L is the characteristic spacescale, δn ≡ δ(ζ − n), δ(·)
is the Dirac delta function and Z denotes the set of all integers.

The evident symmetries of rotation, ψ → ψ exp(iψ0), ψ0 is an arbitrary constant, and
a translation, {p, I }(ζ ) → {p, I }(ζ + 1), allow us to represent the dynamics of the system
as a certain iterative process by the identification of the planes nζ and (n + 1)ζ . The group
symmetry is realized first as the invariant of motion

p − kI = inv. (52)

By means of (36), we write down expression (52) as

εz − α−1ε2
t = 0, α = (2ωB/ω)vph, (53)

where the constant of integration chosen equals zero. In view of (53) the number of dimensions
reduces to two. Let the variables z and p be the represented pair.

Now the explicit form of the iteration system is to be found. Denote by TM the tangent
fibering. There exists the map v̄ : M → TM , such that the field of vectors has the form

v̄ = k

√
2mωBI

H0
A sinψ

∑
δn

∂

∂p
+ pH−1

0

∂

∂z
. (54)

Then each element of v̄ is assigned the 1-form, so that the field of 1-forms may be written as

ṽ = −k

√
2mωBI

H0
A sinψ

∑
δnd̃z + pH−1

0 d̃p. (55)

The notations ∂/∂xi and d̃xi are employed here for the orthonormal coordinate basis of vectors
with the algebra mentioned above and for the dual basis of 1-forms, such that

d̃xi
∂

∂xi
= δi′i =

{
1, i = i ′,
0, i �= i ′,

where (xi) = (p, z).
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It is well known that the section of the field of 1-forms, ṽ(v̄) = 0, on a submanifold in M
is equivalent to the solution of equations (48) and (49) [27].

Then directly integrating the equation (−k
√

2mωBIH
−1
0 A sinψ

∑
δnd̃z+pH

−1
0 d̃p)(v̄) =

0 along with (53) yields

(pn+1/m)
3/2 = (pn/m)

3/2 + (3/2)α1/2N(A/m) sinψn, N = [kL], (56)

where N is the characteristic number of modes in the wave packet and [ ] denotes the integer
parts.

Taking into account that the timescale of the problem is T = L/vz, from (51) follows the
equationψn+1 = ψn+ω(pn+1, In+1)T ,which describes the phase shift acquired by the particle.
This equation may be written in the explicit form as

ψn+1 = ψn + N

(
1 +

αm

2pn+1

(
1 − ω

ωB

√
1 +

(pn+1

m

)2
+ α

pn+1

m

))
(mod 2π). (57)

It is readily seen, if the inequality ε2 � 1 is valid, that the set of equations (56) and (57) can
be transformed into the map:

un+1 = un + Q sinψn,

gn :
ψn+1 = ψn + (3π5/3/2Q)|un+1|−2/3sgn un+1(mod2π),

(58)

written in the perception

u = π

(
ε

εb

)3/2

, Q = 3π

4

(
α

εb

)3/2

Nb, εb = α

(
1

4
N2b

)2/5

, (59)

where un+1, ψn+1 and un, ψn, are, respectively, the values of the normed momentum and phase
at times (n + 1)ζ and nζ .

In writing (58) we have used the relationship between the fields Aw and Bw,

A/m = αb/2, b = Bw/B, (60)

which follows from equations (3).
The quantity A/m has a clear physical meaning: it is the dimensionless representation of

the ratio of the wave field work on one wavelength to the particle rest energy.
Now we describe a relativistic particle motion in a time-like wave packet (TLP).
In this case the Hamiltonian of the problem becomes

H(p, z; I, θ; t) = H0(p, I ) +

√
2mωBI

H0
A cosψ

∑
δ(τ − n), (61)

where we used the TLR of wave packet given by (25). Here δ(τ − n) is the Dirac function,
τ = [t/T ] and T is the characteristic timescale.

AQ4 These associated with (61) equations of motion, written on the framed manifold with the
preceding notation, are

ṗ = k

√
2mωBI

H0
A sinψ

∑
δ(τ − n), İ =

√
2mωBI

H0
A sinψ

∑
δ(τ − n), (62)

ż = pH−1
0 , θ̇ = ωBmH

−1
0 . (63)

ψ̇ = kż + θ̇ − ω. (64)

We retain in (63) only the terms of leading order.
These equations can be transformed into a map by the identification of the planes nT and

(n + 1)T as follows.
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At first, one must note that the invariant of motion like that of (53), lowering the number
of degrees of freedom, is retained. Applying the invariant to (62)–(64)), we integrated these
equations to find the coupled pair of nonlinear difference equations:

pn+1/m = pn/m + (Nαb/2) sinψn, N = [ωT ],

ψn+1 = ψn +
1

2

√
αN

√
m

|pn+1| sgnpn+1(mod 2π), (65)

where the variables pn,ψn are taken at t = nT .
In the representation

π

(
ε

εb

)2

= u, Q = πα2bN

2ε2
b

, (66)

where

εb = 1

2
α
(
N2b

)1/3
. (67)

Equations (65) go over into a map, Gn,

un+1 = un + Q sinψn,

Gn :
ψn+1 = ψn + 2(π3/2/Q)|un+1|−1/2sgnun+1(mod 2π),

(68)

which is suitable for sequential analysis.
The closed set of equations (68) is a measure-preserving map expressed in the terms of the

canonical pair of variablesψ, u. It is obvious thatgn as well asGn inherit the canonical structure
of the basic equations. Note that the maps gn,Gn are formalized by the essentially different
transformations (59) and (66). In the following we refer to (58) and (68) as corresponding to
the SLR case and the TLR case, respectively.

5. Stochastic attractors of the system

The maps gn and Gn, or rather the families of maps depending upon the parameter Q, become
suitable for sequential analysis. So hereafter we deal with high-frequency heating relativistic
particles, expressed in terms of the discrete groups of automorphisms gn and Gn, that act on
smooth manifold. Denote by

J = ∂(un+1, ψn+1)

∂(un, ψn)
(69)

the Jacobi matrix of these maps. It is important to note that the Jacobian of (58) is equal to
one; therefore, gn and Gn have a structure of differentiable area-preserving maps. It stands to
reason that u and ψ are the canonical pair of variables.

We now study the behaviour of this dynamic system by computational analysis. We have
numerically integrated equations (58) and (68) for several different values of Q from 10−3

to 0.1. Figure 1 shows some of our results computed for map (58) after (106–104) iterations
for one trajectory in the (u,ψ) phase space. Shown in figure 2 is the phase space of Gn. The
initial conditions were chosen in a random fashion and corresponded to the region of small
values of (u, ψ).

The visual impression of the figures indicates that the phase curves are likely stochastic
orbits. So, while smooth curves, piecewise smooth curves and curves with finite length all
have topological dimension one, the phase curves constructed by iteration function systems gn
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-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

u

phase

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

u

phase

(a)

(b)

Figure 1. The phase space of the map gn. (a) One single trajectory of length 106 for Q = 0.01π .
The trajectory started from the point u0 = 10−3, ψ0 = 10−4. The identification of points is
indicated by the arrows. (b) Close to zero, approximation gn loses its validity. Therefore, in the
vicinity of u = 0 we must use the solution of the original equations (56) and (57) expressed in
terms of the variables of u, ψ given by (59). The figure shows that the boundary of the chaotic
region is well approximated by the condition (79). The parameters are the same as in (a).

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

U

phase

Figure 2. The phase space of the map Gn. A single trajectory of length 106 for Q = 10−3π . The
trajectory was started from the point (10−4, 10−3).

and Gn have seemingly dimension close to two. Of course, to clarify this issue, we need to
establish that the dynamics of the system is realized on the stochastic (strange) attractor. Let us
consider a pair (M, gn) and/or a pair (M,Gn), where M is a smooth manifold and gn and Gn

are the differentiable area-preserving maps, and either of these pairs determines the phase flow
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on M . From (58) and (68) it follows that these pairs are invariable under the transformation

ψ → −ψ, u → −u (70)

and the inversion of a point with respect to a circle ψ(mod2π) ∈ S. On that basis, we define
the following equivalence rules:

(−π, u) ∼ (π, u), (ψ,−π) ∼ (ψ, π), (71)

where ∼ stands for the equivalence sign.
The identification of these points is indicated by the arrows in figure 1.
The equivalence rules (71) allow us to represent the phase space of the system as the

quotient space having the quotient topology of torus, T 2 = S×S, ψ(mod2π) ∈ S, u ∈ S [23].
Now we discuss the local topology considering a Jacobi matrix given by (69). Denote by

λ1 and λ2 the eigenvalues of the matrix J . Recalling that the local structure is determined by
the proximate neighbourhoods of fixed points, we have from (69)

det J = λ1· λ2 = 1, (72)

trJ = λ1 + λ2 = 2 + (π5u−5)1/3, (73)

for the SLR case and

det J = 1, (74)

trJ = 2 + π3/2| u |−3/2, (75)

for the TLR case. Here det J and trJ denote the determinant and the trace of this matrix,
respectively.
As pointed out in [11] the condition

| trJ | = 3 (76)

corresponds to a topological modification of a phase space, and its validity implies that the
manifold has the topology of a hyperbolic torus. Thereupon from (76) subject to (73) and/or
(75) we find

λ1 = 3 +
√

5

2
, λ2 = 3 − √

5

2
. (77)

Since λ1 and λ2 are the dynamic characteristics such that λ2 > 0, λ1 > 1 and the ratio λ1/λ2

is an irrational number, the map (ψn, un) = gn(ψ0, u0), (ψ0, u0) is an initial point of the phase
curve and forms a stochastic phase flow with the mean rate of loss of information, K ,

K = ln λ1, (78)

where K is the Kolmogorov entropy.
It is clear that the phase flow (M,Gn) possesses just the same properties.
Present conditions (73), (75) and (76) ensure that the relation

| ub | = π (79)

takes place, and it determines the upper bound of {u}.
Like that the set {u,ψ} is a compact, whose structural stability is determined by the fractal

dimension, df ,

df = 1 − ln λ1/ ln λ2, df = 2. (80)

We call any compact a probabilistic fractal if its topological dimension is less than df and
K > 0 [12]. In our case both these conditions are valid.
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Figure 3. Joint distribution ρ(ψ, u) computed numerically via Gn at several different number of
steps. The parameters are the same as in figure 2. The figure shows ρ(ψ, u) at times (a) t = 102;
(b) 104; (c) 105, respectively. The diagram at t = 102 shows uniform distribution overψ is already
established. (c) indicates uniform steady-state distribution, implying that the dimension of the
attractor is 2.

As seen in figures 1 and 2 for given values of Q the stochastic region extends to values of
u predicted by equation (79). We know that u depends on the parameters of this problem as
given by (73) and (75). By that condition (79) determines in itself an equivalence class in the
Q-parametric space.

Considering (73), (59) and (53) from (79) two equations result

εb = α

(
1

4
bN2

)2/5

, (81)

εb =
(

1

2
α (ωB/ω)

2 N2b

)1/3

� 1

2
α
(
N2b

)1/3
, (82)

which determine the upper values of the energy spectra for the SLR and TLR cases, respectively.
Note that the dependence of εb on the driving field b is weak enough. This agrees with both
the numerical solutions and the results of qualitative analysis.

Finally, it should be noted that the phase flows, (M, gn) and (M,Gn), are structurally
stable and typical because df andK are invariants, and sup{ε} smoothly depends on the driving
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amplitude b, which is the controlling parameter of the system. Phase flows with such properties
are said to be stochastic (strange) attractors. Certainly the flows (M, gn) and (M,Gn) are such
attractors has to be proved.

Finally, the achieved fractal measure df = 2 infers that the points of the phase curve
evenly fill all obtainable phase space, or in other words, all states of our dynamic system are
equivalent. This issue is supported by simulation in figure 3 in which is represented a joint
probability density, ρ(ψ, u). The following algorithm was used for computing ρ. We partition
all the phase space on the identical cells with the mesh size !ψ!u = (2π/40)x(2π/30).
Like that ρ(ψ, u) is proportional to the number of phase points in the element of phase space,
!ψ!u. Figure 3 reveals that diffusion in the phase angle is very fast. Significant phase angle
diffusion occurs on timescales of the order of tens of T , where T is the step of one iteration.
On these timescales, the change in u is small (the numerical calculations indicate that the
characteristic time for establishing the uniform distribution in u is proportional to T/Q2 at
Q � 1); therefore, the variable u is a slow varying coordinate on the strange attractor. The
statistical aspect of the problem will be studied in more detail in section 6.

6. Particle stochastic heating

Particle dynamics in random electromagnetic fields is known to be described by the quasilinear
theory (QLT) [25]. The QLT approach, in particular, has been employed to deal with diffusion
of electron in the turbulent field of whistler waves packet [22].

In coherent electromagnetic fields, on the other hand, the particle dynamics is not described
by this theory. The nature of the diffusion in this case is the stochastic dynamics of particles,
when the motion along stochastic trajectories gives rise to the so-called deterministic diffusion
[1]. General mathematical and physical aspects of this problem have been discussed, for
instance, in the reviews [24, 10].

The purpose of the present paper is to investigate electron dynamics in the coherent
packet of whistler mode waves. We have employed here the method in which the perturbation
of particles orbits are included into a Fokker–Planck–Kolmogorov (FPK) equation [1].

In the present section, we shall exploit the canonical Hamiltonian structure that has been
developed above. Thus, the drift kinetic equation follows at once since the canonical structure
of equations of motion (58) and (68) has been established. As shown above, the maps gn and

AQ5Gn act on any strange attractor; therefore, the distribution function (probability density)f (u; t)
on the attractor obeys the FPK equation:

∂f (u; t)
∂t

= 1

2

∂

∂u
D
∂f

∂u
, (83)

which holds if Q � 1 [1].
AQ6Here D is the conventional diffusion coefficient in phase space,

D =< (un+1 − un)
2 > T −1, (84)

in which (un+1 − un) is substituted from (58) or (68), <·> denotes the phase average and T is
the timescale of maps gn or Gn. The function f (u, t) belongs to the space of all differentiable
functions supported in [−π, π ], and the functional∫ π

−π

f (u, t)du = 1 (85)

is the condition of normalization.
First by means of gn ( or Gn) we calculate by formula (84) the diffusion coefficient

D = Q2/2T . (86)
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Then, making use of result (79) proved above, along with (83) and (86), we evaluate the
characteristic time for redistribution u over the spectrum

td � u2
b/D = 2T (π/Q)2. (87)

An objective of this study is to determine the time-independent distribution function and
the rate of heating. This requires a solution of the FPK equation together with a normalization
(85). Thus, a solution of the FPK equation along with the boundary condition f (−π) = f (π)

in the limiting case t � td may be given in the form of the uniform distribution

f (u) = (2π)−1, u ∈ l, l = (−π, π) (88)

for an independent random variable u with mean zero.
Now, it becomes relevant to determine how the system evolves in time at t � td. We

currently exploit the FPK equation with f (u) and its derivative ∂f/∂u vanishing at the
boundary. We introduce the moment < u2 >= ∫ π

−π
duu2f (u), multiply equation (83) by

u2 and integrate the resulting equation over u to obtain

d < u2 >

dt
= D. (89)

Equations (83)–(89) describe two physically different situations: an electron motion in the SL
wave packet and that, respectively, in the TL packet.

We know, that the variables u and ε are related by (59) and (66). This allows us to attach to
all possible states of ε a probabilistic measure, namely, the probability density, f (ε, t), which
is associated with f (u, t) via the measure-preserving point transformation

f (ε, t) = f (u, t)(du/d(ε)). (90)

Representing our results we start with the SLR case. In this case the variables u and ε are
associated by relation (59).

Then from equations (88) and along with the norm∫ εb

0
f (ε, t) dε = 1

we derive the steady-state distribution

f (ε)dε = 3

2
ε

−3/2
b ε1/2 dε, {ε ∈ R+ |0 � ε � εb}, (91)

for the random variable ε with the mean value < ε >= 0.6εb, and the relative standard
deviation √

< ε2 > − < ε >2

√
< ε2 >

= 0.4. (92)

Equations (91) and (92) describe the state density and level of fluctuations in the energetic
spectrum; εb is the upper value of this spectrum given by (82).
Then we used relations (59) in equations (89) and (87) to find the rate of diffusion,

d < ε3 >

dt
= D, D = α3N2b2

16T
, t < td, (93)

and the characteristic time of diffusion in energy,

td = 16T
(
N/64b2

)2/5
. (94)

The distribution function f (u, t) in the TLR case also obeys the FPK equation as a
consequence of the fact that the equations of motion, expressed in coordinates (u, ψ), reflect
the underlying canonical Hamiltonian structure of equations (68).
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Now we use the dynamical equations (68), written in representation (66), and the local
transformation (90), to derive equations, governing diffusion in energetic space. Thus the
energy spectrum of particle follows from formula (88)

f (ε)d ε = 2

ε2
b

εd ε, (95)

where εb is given by (82). With respect to equations (83, 84) and (87) we find the equations,
describing evolution of the energy spectrum,

∂

∂t
f (ε, t) = 1

2

∂

∂ε
D(ε)

∂

∂ε
f (ε, t), (96)

D(ε) = α4N2b2

32T ε2
, (97)

d < ε4 >

d t
= α4N2b2

16T
, t < td, (98)

td = 1

2
T (N/b)2/3 . (99)

Note that expressions (93) and (98) describe a stochastic process which differs essentially
from the Brownian-like diffusion. Furthermore, solutions of equations (93) and (98) predict
qualitatively different behaviour of the system. Thus, in the SLR case the particle energy
grows with time as t1/3; in another case the energy growth is proportional to t1/4.

Now we describe the effects associated with the stochastic heating of particle. First we
discuss the pitch angle distribution over particle energies. Denote by χp the pitch angle and
let χ be its complementary angle. Then on account of Aw/m � 1 we have

tan χ = vz

vt
� εz

εt
. (100)

Taking account of invariant of motion (53) we derive the following dependence:

tan χ = (εz/α)
1/2. (101)

Thereupon correspondence (91) along with the measure-preserving transformation f (χ) dχ =
f (ε) dε yields the time-independent pitch angle distribution f (χ), namely,

f (χ) dχ = 3(α/εb)
3/2(1 + tan2 χ) tan2 χd χ, χ ∈ (−χb, χb), (102)

tan χb = (εb/α)
1/2

and its dependence on the particle energy

f (χ(ε)) = 3
ε2

ε
3/2
b α1/2

. (103)

Here εb is given by (81). A function given by (102) is the concave symmetric function of χ ,
having the maximum at χ = π/2 (χp = 0); its derivatives tend to infinity as χ → ±π/2.
This function describes the so-called U-like distribution.

In another case under condition (38) we write down expression (100) simply as

χ � ε/α, (104)

χ ∈ (−χb, χb), χb = εb/α, (105)

where εb is given by (82). Then we find the pitch angle distribution function,

f (χ) = |χ |/χ2
b , |χ | � χb,

0, elsewhere,
(106)
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for the random variable χ with mean zero, and its dependence on the particle energy

f (χ(ε)) = α
ε

ε2
b

. (107)

Now the equation governing diffusion in the pitch angle may be derived via the measure-
preserving transformation f (χ, t) = f (ε, t) dε/dχ and the relation χ = ε/α. For f (χ, t)
satisfying these conditions on [−χb, χb], we write down the following FPK equation:

∂

∂t
f (χ, t) = ∂

∂χ
D(χ)

∂

∂χ
f (χ, t), (108)

D(χ) = N2b2

32T χ2
. (109)

From these equations we find the timescale for scattering,

ts = 32T
χ4

b

N2b2
= T (N/b)2/3 , (110)

and the scattering rate

d

dt
< χ4 >= N2b2

16T
, t < ts. (111)

According to (99) and (110), we note that the timescales for heating and scattering are
comparable.

Next we show that the stochastic heating is accompanied by a spatial diffusion of electrons
across a homogeneous magnetic field. Indeed, because of the one–one correspondence
r = εt/ωB and the invariant of motion (53), the distributions of electrons over r and ε are
related uniquely by the relation f (r, t) = f (ε, t)dε/dr . It means that f (r, t) obeys the FPK
equation

∂

∂t
f (r, t) = 1

2

∂

∂r
Dt(r)

∂

∂r
f (r, t), (112)

Dt(r) = α4N2b2

32T ε2ω2
B

, (113)

which follows from equation (96) at once.
The function f (r, t) is supported on [r0, rb], where r0 = 1/ωB and rb = εb/ωB , and Dt

is the coefficient of diffusion of electrons across a magnetic field.
One should note that a classical Brownian-like diffusion process predicts that the mean

square displacement grows linearly with time, and its rate is given by DB
t � νei < r2 >

representing the Bohm-like diffusion coefficient (νei is the frequency of collisions).
Note that DB

t has a strong dependence on B (as B−2), while the coefficient of diffusion
given by (113) is non-sensitive to the change in B, and it hinges on b and ε as b2, ε−2.

Equations (112) and (113) are correct, if the inequality rb/L � 1 holds. In view of
equation (82), this requirement can be written in the form rb/L � (ω/ωB)(εb/N), (� 1). For
typical parameters this condition is satisfied trivially.

We have done the solution of this problem. By way of illustration, we apply the results
of our investigation to the Jupiter magnetosphere.

7. Application

It is known that the Jovian magnetosphere contains high-energy electrons spiralling in Jupiter’s
strong magnetic field. Thus, the existence of Jupiter’s radiation belts was confirmed via
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synchrotron emission measurements by Van Allen et al [13] and Fischer et al [14]. Of late
Bolton et al [15] have reported about the presence of electrons at energies up to 50 MeV
in Jupiter’s inner radiation belts. They have suggested that high-energy electrons require
substantial acceleration by processes other than adiabatic radial diffusion. The mechanism
may be a local acceleration of electrons by the whistler mode waves, which were observed in
the Jovian magnetosphere [16].

To check the performance of the method, at first the parameters of the problem are chosen
to reflect a typical whistler wave propagating along the Lp = 6 shell, where the electron
cyclotron frequency ωB = 3.3 × 105 s−1, the electron plasma frequency ωp = 2.2 × 106 s−1,
and the wave frequency ω = 1.5 × 105 s−1. Thus, the dispersion relation (8) corresponds
undoubtedly to the problem, and by (8) we find the phase velocity vph � 0.08 and the
wavenumber k = 6 × 10−5 cm−1. The theory is based on three parameters, namely, α,N, b.
First we evaluate α = 2vphωB/ω, α = 0.32. Typical magnitudes of whistler mode waves are in
the range of 10−7 G; consequently, the parameter b is of the order of 10−5 [17]. To evaluate the
parameterN = kL for the space-like wave packet, we need to estimate the characteristic size of
the domain of resonant interaction (the zone of intense wave activity). Since the characteristic
size of the region is of the same order of magnitude as the spacescale of inhomogeneity of
a background magnetic field near the Io torus, we have accepted L = 5 × 108 cm. For
that the value of N is about N = 3 × 104. In the following we will use these values
to obtain an estimate of some quantities. First by means of (82) we calculate the upper
value of the energetic spectrum, Eb � 3.5 MeV. Considering that the transit time of the
particle through the intense wave activity domain is T = L/vz, i.e. T � 1.67 × 10−2 s, we
evaluate by (94) the timescale of stochastic diffusion over the energetic spectrum, td � 8–
9 h. Now the effect of the pitch angle scattering should be evaluated. From (102) at εb = 7
and α = 0.32 it follows that in this case whistler waves can diffuse electrons in a cone
with a vertex angle, χv = 2χb, which is about 156◦. Equation (103) indicates a degree of
scattering anisotropy, degA = f (χ)(ε = εb)/f (χ)(ε = 1), which increases with ε up to
degA � 50.

Now we apply our results to Jupiter’s inner radiation belts. Here we use the following
values: ωB = 2 × 107 s−1, ωp = 5.65 × 105 s−1 and ω = 1.5 × 105 s−1. Thereafter we
obtain vph � 0.95 and α � 270. Now the transit time is L/vgr, where L is the lengthscale of
inhomogeneity at these locations, L � 109 cm; therefore T is about 3×10−2 s. In view of (3),
Bw = Ew/vph, and using a spectral density of (1–3)×10−11 V2 m−2 Hz−1 obtained by Kurth
et al [16] and Hobara et al [18] we findBw � 1.6×10−8 G. Like that the reference parameters
are b = 1.6 × 10−8 and N = [ωT ] = 5 × 103. Then we calculate by (98) and (99) the upper
value of the particle energy, Eb � 50 MeV, and, respectively, the timescale of establishing the
energetic spectrum, td � 7–8 d. These expressions yield the mean rate of heating, namely,
εb/2td = αb/T , εb/2td � 100 eV s−1. It is clear that the mean heating rate depends linearly
on the wave field magnitude; moreover, the mean energy acquired by a particle equals the wave
field work on one wavelength multiplied by the ratio of the diffusion time to the characteristic
particle transit time through the wave packet. We find that the phase space diffusion leads
to a diffusion of electrons across an external magnetic field. Then by (113) we calculate
the rate of diffusion caused by the chaotic motion, Dt � 2 × 107ε−2 cm2 s−1. This process
is more effective than a classical Bohm-like diffusion. To show this we use the following
simple estimate. Taking plasma density of 102 cm−3 and assuming v � c, we obtain from
DB

t � νei < r2 > that DB
t � 5×10−6 cm2 s−1. Thus the diffusion in phase space results in an

enhancement of the absolute radial diffusion. Now with respect to the pitch angle scattering,
AQ7the results (105) and (107) show that the wave packet to effectively scatter electrons in pitch

angle lead to establishing the distribution peaked at χp � 74◦ with the degree of anisotropy
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degA = 100. Of particular importance is that in this energy range the characteristic scattering
time is comparable to the time of diffusion in energy.

Relativistic charged particles lose their energy through the emission of electromagnetic
waves. When the dominant loss channels are the synchrotron radiation and the inverse Compton
effect, the rate with which a relativistic particle loses its energy is

ε̇ = −βε2, (114)

where β is the radiation coefficient.
As a result, we arrive from (114) at the formula

tr = (βε)−1 = 5.1 × 108(B0/B)
2ε−1, B0 = 1.0 G, (115)

for the characteristic lifetime of the particle [19].
Comparing tr and the timescale of diffusion over the spectrum, td, shows that typically

tr � td; therefore, the effect of emission on stochastic heating is negligibly small. Thus,
expressions (81) and (82) for upper values of particle energy spectra remain, and changes in
the shape of the spectra are very little. It is known [19] that the wave spectrum of synchrotron
emission is characterized by a well-defined frequency,

ωr = ωBε
2, (116)

and it can be represented with the help of relation (95) in the form of uniform distribution

f (ωr) dωr = ω−1
b dωr, (117)

where ωb = ωBε
2
b is the limiting frequency in the spectrum.

We observe from (116) that the frequencies at which an electron emits the synchrotron
radiation is considerable higher than the plasma frequency ωp. It is interesting in that this
radiation, providing information about the energy spectra, can leave the local plasma and then
be detected by an outside observer.

Now to see that our approach correctly interprets the facts, it is necessary to find the range
of validity of our results. The equations of motion (56) and (57) in the region of relativistic
energies are obtained in the faithful representation, and the ultra-relativistic approximation,
ε2 � max{α2, 1}, has been employed in deriving (58). According to (81), this inequality may
be written in the form

2(ωB/ω)vphε
−1 < 1. (118)

Owing to (82) the latter can be transformed into the requirement

b = Bw/B > 4N−2α−5/2 (� 8 × 10−8). (119)

In another case the electron motion obeys equations (68), obtained in the approximation,
1 � ε2 � α2. Taking into account expression (82), we write down this condition as

8N−2α−3 < b < 8N−2. (120)

By a typical condition for Jupiter’s inner magnetosphere the above expression gives 10−14 <

b < 4 × 10−7. These conditions are fairly easy to check. Recalling spectral density
measurements [16, 18] yield Bw � 10−7 G, we conclude that (119) and (120) are trivially
satisfied; therefore, the upper limits for the energetic spectra given by (81) and (82) are correct.

Finally, the basic equations are applicable provided kL � 1, and ωBT � 1, and
Aw/m � 1, which are typically fulfilled.

It should be noted that the geometry of an ambient magnetic field does not play a role
in the given problem; thus, the lengthscale of an interaction region is typically smaller than
the travelling path, i.e. an ambient magnetic field is always locally an uniform field. To this
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may be added that the analytic model describing the motion of a particle out of the interaction
region must include the radial diffusion of electrons conserving the first and second adiabatic
invariants.

We conclude that for typical values of the wave field in the Io torus, significant diffusion
occurs on timescales of the order of a few hours for electrons with energies up to 3.5 MeV. In
the inner radiation belts stochastic acceleration of electrons by whistler waves could provide a
viable mechanism for energization of electrons from energies near 1–50 MeV over a period of
a few days. The results obtained indicated that the dependence of maximal electron energy εb

on the magnitude of the wave field b is rather weak, although εb increases with increasing b.
The obtained energetic spectra were used for evaluating pitch angle distribution functions

over different energies. Stochasticity in the pitch angle distribution of relativistic electrons
spiralling in a strong magnetic field near Jupiter appears as a sharp peak near 90◦; in relatively
weak magnetic field at Lp = 6 electrons are mainly scattered by whistler waves almost along
the direction of an external magnetic field. The time to scatter a particle into the scattering
cone is comparable to the time of diffusion energy.

The electrons involved in a process of stochastic acceleration produce radiation via the
synchrotron mechanism. Thus, energetic electrons emitting observed hectometric [20] and
centimetric [15] synchrotron radiation, respectively, in Jupiter’s outer and inner radiation
belts according to (116) and (117) must have energy comparable to 3.5 MeV and 50 MeV.
Thereto the observation of synchrotron emissions is obviously an evidence of in situ particle
acceleration. This is a further confirmation that the model correctly predicts the main features
of the observations.

Chaotic motion driven by wave packet is also responsible for enhanced particle
diffusion across an external magnetic field. This result is in reasonable agreement with the
experimental data.

8. Summary

A canonical Hamiltonian approach has been employed to deal with the whistler wave–electron
interaction and the stochastic heating of high-energy electrons in magnetized plasmas. The
time-like and space-like wave packet representations were used in deriving the equations of
motion for relativistic electrons.

The irreversible dynamics on a strange attractor was studied via the FPK equations with a
coefficient of diffusion calculated from the equations of motion. The FPK equations describe
macroscopic effects such as stochastic heating, pitch angle scattering and radial drift of
plasma particles. The effect of stochasticity on the spectrum of synchrotron emission was
also evaluated.

The mathematical structure is realized in the Jovian radiation belt events as follows.
The main feature of Jupiter’s radiation belts is its striking stability in a dynamic state far

from equilibrium.
On the other hand, the results indicate that the phase flow of our dynamical system is a

structurally stable strange attractor. Chaotic motion on the attractor gives rise to an irreversible
process (the so-called deterministic diffusion), which actually leads to establishing steady-state
energy spectra and results in important and easily observable effects such as stochastic heating
and pitch angle scattering of plasma particles. Under conditions typical of this mechanism, the
heating region is determined by the boundaries of the attractor and the heating rate is governed
by the nature of the kinetics, which in turn depends on the canonical variables on the attractor.
The same conditions impose limitations on the timescales of macroscopic effects and feasible
extent of heating, so that the understanding of these conditions is of great practical interest.
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